PDDP - Principal Direction Divisive Partitioning Clustering
Algorithm
PDDP clusters a term-document matrix (tdm) using the
Principal Direction Divisive Partitioning clustering
algorithm [1, 2].
CLUSTERS=PDDP(A, K, L) returns a cluster structure with
K clusters for the tdm A formed using information from
the first L principal components of the tdm.
[CLUSTERS, TREE_STRUCT]=PDDP(A, K, L) returns also the
full PDDP tree, while [CLUSTERS, TREE_STRUCT, S]=PDDP(A,
K, L) returns the objective function of PDDP.
PDDP(A, K, L, SVD_METHOD) defines the method used for the
computation of the PCA (svds - default - or propack), while
PDDP(A, K, L, SVD_METHOD, DSP) defines if results are to be
displayed to the command window (default 1) or not (0).
REFERENCES:
[1] D.Boley, Principal Direction Divisive Partitioning, Data
Mining and Knowledge Discovery 2 (1998), no. 4, 325-344.
[2] D.Zeimpekis, E.Gallopoulos, PDDP(l): Towards a Flexible
Principal Direction Divisive Partitioning Clustering
Algorithmm, Proc. IEEE ICDM'03 Workshop on Clustering Large
Data Sets (Melbourne, Florida), 2003.
Copyright 2011 Dimitrios Zeimpekis, Eugenia Maria Kontopoulou,
Efstratios Gallopoulos