PDDP - Principal Direction Divisive Partitioning Clustering 
  Algorithm 
    PDDP clusters a term-document matrix (tdm) using the 
    Principal Direction Divisive Partitioning clustering 
    algorithm [1, 2]. 
    CLUSTERS=PDDP(A, K, L) returns a cluster structure with 
    K clusters for the tdm A formed using information from 
    the first L principal components of the tdm. 
    [CLUSTERS, TREE_STRUCT]=PDDP(A, K, L) returns also the 
    full PDDP tree, while [CLUSTERS, TREE_STRUCT, S]=PDDP(A, 
    K, L) returns the objective function of PDDP. 
    PDDP(A, K, L, SVD_METHOD) defines the method used for the 
    computation of the PCA (svds - default - or propack), while 
    PDDP(A, K, L, SVD_METHOD, DSP) defines if results are to be 
    displayed to the command window (default 1) or not (0). 
 
    REFERENCES: 
    [1] D.Boley, Principal Direction Divisive Partitioning, Data 
    Mining and Knowledge Discovery 2 (1998), no. 4, 325-344.
    [2] D.Zeimpekis, E.Gallopoulos, PDDP(l): Towards a Flexible 
    Principal Direction Divisive Partitioning Clustering 
    Algorithmm, Proc. IEEE ICDM'03 Workshop on Clustering Large 
    Data Sets (Melbourne, Florida), 2003. 
 
  Copyright 2011 Dimitrios Zeimpekis, Eugenia Maria Kontopoulou, 
                 Efstratios Gallopoulos
					
				

Return to main page